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a b s t r a c t 

Choroid neovascularization (CNV) is a pathological manifestation of retinal-choroidal diseases such as 

age-related macular degeneration and pathological myopia, which can cause permanent loss of central 

vision. Prediction of its growth is important in treatment planning. In this paper, based on longitudinal 

optical coherence tomography (OCT) volumes, a three-dimensional CNV growth prediction framework is 

proposed. A hybrid model which combines the reaction-diffusion model and the hyperelastic biomechan- 

ical model through mass effect is adopted to characterize the growth of CNV region and its reaction with 

surround tissues. A treatment factor is also included so that the model can adjust to different treatment 

plan each patient receives. Tested on a dataset with 6 subjects, each with 12 longitudinal 3D images, the 

proposed method achieved average true positive rate (TPR), false positive rate (FPR) and Dice coefficient 

(DC) of 80.0 ± 7.62%, 23.4 ± 8.36% and 78.9 ± 7.54%, respectively, in predicting the future CNV regions, 

and outperforms those achieved by the single reaction-diffusion model. 

© 2021 Elsevier B.V. All rights reserved. 
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. Introduction 

Choroidal neovascularization (CNV) is a pathological manifes- 

ation of retinal-choroidal diseases such as wet age-related macu- 

ar degeneration, pathological myopia, and central serous retinopa- 

hy, which can damage central vision and lead to blindness in se- 

ere cases. The overexpression of vascular endothelial growth fac- 

or (VEGF) in retinal pigment epithelial cells is considered to be 

rucial with the development of CNV [ 1 , 2 ]. Hence, currently, the

ost effective treatment for CNV is repeated intravitreal anti-VEGF 

njections. As this process is long-term and expensive, and compli- 

ations may be caused by intraviteal injections, treatment planning 

s important to maximize the efficacy while reduce the cost and 

isks. 

Optical coherence tomography (OCT) [3] , as a non-invasive reti- 

al imaging technique which can show the 3D structure of CNV- 

elated pathologies, is ideal for CNV diagnosis and tracking of its 
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rogress. Qualitative or quantitative criteria obtained from OCT im- 

ges have been used in clinical practice for treatment planning, 

uch as to determine the necessity of next injection [ 4 , 5 ]. If accu-

ate prediction of the CNV growth can be achieved based on mod- 

ling the change of physiological structure shown in OCT images, 

he patient’s response to the treatment can be analyzed and per- 

onalized anti-VEGF treatment plan can be made. 

Many existing research on prediction of CNV progress or treat- 

ent planning focused on simple indicators such as the retinal 

hickness, choroidal thickness and volume of intra-retinal of sub- 

etinal fluids [ 5 , 6 ]. The extensive information contained in the OCT 

mage was ignored by using these simple measurements as an in- 

icator of CNV growth. In [7] , based on OCT quantifications of 

etina and fluids, a machine learning based approach was proposed 

o predict the retinal response at the end of a standardized 12- 

eek induction phase of anti-VEGF treatment. In [8] and [9] , us- 

ng similar biomarkers, the number of future anti-VEGF injections 

nd prognostic visual acuity were predicted. These methods didn’t 

ive the future status of the CNV. Methods for predicting the actual 

osition and range of the future CNV region are very limited. In- 

pired by the tumor growth modeling methods in [10-12] , we first 

roposed a model-based CNV growth prediction method based on 

he reaction-diffusion equation and finite-element-method (FEM) 

https://doi.org/10.1016/j.patrec.2021.03.006
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patrec
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patrec.2021.03.006&domain=pdf
mailto:xjchen@suda.edu.cn
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Fig. 1. Flowchart of the proposed method. 
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Fig. 2. Registration of longitudinal OCT images. (a) Reference image. (b) Moving 

image (c) Registration result. Yellow dots indicate manually selected feature points, 

and green dots indicate feature points after transformation. 

Fig. 3. Image segmentation: (a) Original image. (b) Segmentation result. 

Fig. 4. Meshed OCT image: (a) Tetrahedral decomposition and meshing of CNV re- 

gion.(c) The gridding frame of retinal area. 
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 13 , 14 ]. However, the performance may be limited by use of the

inear mechanical model, which is proper for small deformation 

ut not for large ones. 

In this paper, we further improve the CNV growth model by 

ombining the reaction-diffusion model and hyperelastic biome- 

hanical model, so that the interaction between CNV and its sur- 

ounding physiological structures are more effectively described. 

he reaction-diffusion model describes the CNV distribution in 

pace and its temporal development, while the hyperelastic me- 

hanical model is used for simulating stress-strain nonlinear de- 

ormations of CNV. Different from the method for tumor growth 

odeling in [12] , which is a simple combination of the two mod- 

ls, the proposed method used the mass effect [15] to effectively 

ntegrate them. A personalized treatment factor is also added in 

he reaction-diffusion equation, allowing drug-induced treatment 

o contribute to the growth modeling. This paper is an expansion 

f [16] , and more technical details are provided. 

. Method 

.1. Overview 

The flow-chart of the proposed method is showed in Fig. 1 , 

ncluding three steps: pre-processing, CNV growth modeling by 

he hybrid model and prediction. Pre-processing includes registra- 

ion, segmentation and meshing. In CNV growth modeling, a hy- 

rid model is constructed and the parameters learned from OCT 

mages of the first n -1 time points. Optimization is done using the 

enetic algorithm. At the prediction stage, the model parameter 

f the last time point is obtained by curve fitting the optimized 

arameters from the previous multiple time points. Then the pre- 

icted CNV region is constructed from the predicted model param- 

ter. The prediction accuracy is evaluated by comparing the pre- 

iction with the ground truth label of CNV region of the last time 

oint. 
109 
.2. Pre-processing 

Registration is first applied to deal with the displacement of 

he longitudinal data. The OCT image at the 1st time point is used 

s reference image, and images at all other time points are regis- 

ered to it. The registration is conducted on 3D OCT images interac- 

ively using a rigid transformation [14] . This simple transformation 

s chosen so that the morphology of CNV is not distorted. Feature 

oints are manually marked on the reference image and the mov- 

ng image. Bilinear interpolation is adopted to calculate pixel val- 

es in the registered images. Fig. 2 shows the registration results. 

Segmentation is necessary for locating regions of interest 

nd separating regions with different physiological structures and 

herefore different growing parameters. In this paper, graph based 

ethods [ 17 , 18 ] with local manual adjustments are used to seg- 

ent the retina in each 3D image into four parts, as showed in 

ig. 3: CNV region (green), outer retinal layer (red), inner retinal 

ayer (cyan) and choroid layer (yellow). Other pathological regions 

uch as soft exudates are ignored and treated as part of the retina 

issues. 

Next, meshing is conducted so that the model can be solved 

sing FEM. The ISO2Mesh method [ 19 , 20 ] is used to mesh CNV

olumes and retinal layers. ISO2Mesh is an open-source mesh gen- 

ration based on volume and surface, suitable for creating high- 

uality surfaces and tetrahedral meshes from 3D medical image. 

ig. 4 shows the results of meshing. 
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Table 1 

Important notations of the hybrid model. 

C CNV concentration F deformation gradient 

D anisotropic diffusion tensor J determinant of F 

ρ proliferate rate I 1 first invariant of the right Cauchy-Green deformation tensor 

f th therapy term κ bulk modulus 

λ ratio for efficacy μ shear modulus 

r FS final stability ratio σ Cauchy stress tensor 

ε Green-Lagrange strain tensor f gradient force 
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.3. The hybrid model 

The proposed model for CNV growth is a combination of 

he reaction-diffusion model and the hyperelastic biomechanical 

odel. The former focuses on the distribution of CNV in space 

ver time, while the latter treats CNV as a hyper-viscoelastic ma- 

erial that interacts with surrounding tissues. The two models 

re linked through mass effect. COMSOL Multiphysics® Software 

COMSOL Inc.) is used to solve the partial differential equations by 

EM [ 21 , 22 ]. The multifrontal massively parallel solver (MUMPS) 

s used. Important notations in this section are summarized in 

able 1 . 

. the reaction-diffusion equation 

Define cas the CNV concentration, and the reaction-diffusion 

quation depicts its change over time [23] : 

∂c 

∂t 
= ∇ · (D ∇c) + ρc(1 − c) − β f th (1) 

here D represents the anisotropic diffusion tensor with three 

omponents D x , D y and D z . ρ is the proliferate rate, which can take 

ifferent value at each time point. The first and second term stand 

or CNV invasion and the logistic proliferation [24] . The third term 

f th is the therapy term. β = 1 only when anti-VEGF treatment is 

pplied at the current time point, and otherwise β = 0 . 

f th = 

(
α

1 + e λt 
+ r F S 

)
· c (2) 

here α is a constant for individualizing model, λ stands for 

he ratio for efficacy, and r F S represents the final stability ratio, 

nd r F S ∈ [0 , 1] . At the beginning of treatment (with small t), the

f th curve can be approximately linear [25] , while at the post- 

reatment stage, the curve tends to be flat. When t = 0 , α/ 2 + r F S 
s the initial concentration ratio, and this value is learned from the 

ata as | V t − V t+1 | / | V t | , where V t and V t+1 represents the size of CNV

olumes before and after anti-VEGF injection. Substituting (2) into 

1) gives (3): 

∂c 

∂t 
= ∇ · (D ∇c) + ρc(1 − c) −

(
α

1 + e λt 
+ r F S 

)
· c (3) 

Without loss of generality, the initial value of c can be set arbi- 

rarily as long as this value is also used as the threshold to obtain

he binary prediction of CNV volume. In our experiments, it is set 

s 4.0 × 10 3 . 

. the hyperelastic biomechanical model 

This model can be used for simulating stress-strain in large and 

onlinear deformations [26] . It adapts well to the characteristics of 

iological tissues and can greatly help to simulate the growth of 

iological tissues, cells or disease areas. 

We assume that after the static equivalent transformation, only 

he stress nearby the exerted location is significantly affected. 

herefore, we use modified Saint-Venant-Kirchhoff constitutive law 

o model the slightly incompressible and isotropic material of CNV. 
110 
he strain energy density function and the constitutive equation 

re given as 

 = 

1 

2 

( F T F − I) (4) 

(ε) = 

1 

2 

κ(J − 1) 2 + 

1 

2 

μT r( I 1 − 3) (5) 

here εis the Green-Lagrange strain tensor, and F is the defor- 

ation gradient with J = det (F ) . F can be decomposed multi- 

licatively to a isochoric deformation component ̄F by F = ( J 1 / 3 I) ̄F = 

 

1 / 3 F̄ and J 1 / 3 Iis the volumetric deformation tensor [27] . The first 

nd the second terms in (5) account for the volumetric and 

sochoric elastic response, respectively. I 1 is the first invariant 

f the right Cauchy-Green deformation tensor. T r represents the 

race, κand μ are the bulk modulus and shear modulus respec- 

ively. The second Piola-Kirchhoff (PKII) stress tensor ( S = ∂ ψ/∂ ε) 

an provide the nonlinear stress-strain relation [26] . To char- 

cterize the different compositions, in our CNV growth model, 

he four retinal regions are assigned different mechanical pa- 

ameters. The empirical values as follows: κCNV = 7 kPa , κchoroid = 

 kP a , κouter _ layer = 6 kP a , κinner _ layer = 0 . 7 kP a , μCNV = μchoroid = 5 ×
0 3 N/ m 

2 , and μouter _ layer = μinner _ layer = 1 × 10 3 N/ m 

2 . 

. mass effect 

The invasion process of CNV leads to a gradual change in 

lood vessel density between regions. In biology, this inhomoge- 

eous distribution of substance move across the membrane leads 

o gradient difference. Then, diffusion occurs when the neovascu- 

arization performs a net movement from high concentration to 

ow. Equilibrium is reached when there is no longer any net move- 

ent in the area. Since the growth of CNV is a slowly changing 

rocess, whose rate is relatively small in a short period of time, 

ts deformation can be regarded as an internal equilibrium system. 

ccording to Newton’s first law, in an internal equilibrium system, 

here is a set of equilibrant (no net-forces) exerted on the object. 

he general formula of the static equilibrium equation is as fol- 

ows: 
 

�
 F = 0 (6) 

Furthermore, CNV growing is not merely the diffusion process 

hat solutes spread along a concentration gradient. It is often ac- 

ompanied by changes in the total mass and volume of substances. 

herefore, as deformation rate of CNV growth is slow enough to 

emain in internal equilibrium, the static equilibrium equation is 

sed to simulate mass and volume changes during the process. 

his relates the gradient force f , generated by the normalized 

nisotropic concentration c in reaction-diffusion equation and the 

auchy stress tensor σ in hyperelastic biomechanical model [23] : 

i v (σ ) + f = 0 ; f = −ξ∇c; σ = J −1 F S F T (7) 

here ξ is a constant that depends on the biological property. 
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Table 2 

Results of CNV prediction in TPR(%), FPR(%), DC(%) and RVD(%). 

Patient-Label Mean ±Std 

T-group 1 2 3 Hybrid Model R-D Model[14] DNN Model Cubic Fitting 

TPR 86.0 64.1 83.0 77.7 ± 9.7 73.2 ± 3.1 65.3 ± 4.9 N/A 

FPR 12.0 39.0 26.4 25.8 ± 11.1 27.5 ± 4.6 48.5 ± 7.8 N/A 

D C 86.1 62.8 80.8 76.5 ± 9.9 73.0 ± 3.6 60.1 ± 8.1 N/A 

RVD 2.3 4.2 5.6 3.3 ± 2.3 18.4 ± 14.7 23.2 ± 20.3 17.8 ± 15.2 

R-group 4 5 6 Hybrid Model R-D Model[14] DNN Model Cubic Fitting 

TPR 79.7 87.1 80.2 82.4 ± 3.4 77.6 ± 2.6 73.6 ± 4.0 N/A 

FPR 18.2 24.9 20.5 21.1 ± 2.7 24.2 ± 2.1 45.8 ± 22.1 N/A 

DC 80.6 83.6 80.0 81.4 ± 1.6 76.8 ± 2.4 71.1 ± 8.9 N/A 

RVD 2.2 8.7 0.5 3.8 ± 3.5 9.7 ± 10.5 17.6 ± 19.0 40.7 ± 38.7 
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Fig. 5. Two different therapy groups during the same interval: M1 to M12 mean 

Month1 to Month12. Monthly treatment is illustrated in purple. In months not 

marked, placebo was injected. The orange arrow means the last month, which is 

the time of assessment. 

Fig. 6. Curves showing CNV voxels change of different patients. 
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.4. Parameter optimization 

For longitudinal OCT images from each subject, we construct 

 personalized hybrid model from the first N -1 time points. 

pecifically, we find the optimal values of parameter set θ = 

 D x , D y , D z , ρ1 , ρ2 · · · ρN−2 } from the ground truth of CNV regions. 

he following objective function, combining the true-positive vol- 

me fraction (TPVF) and false-positive volume fraction (FPVF) over 

ll time points i is minimized: 

Obj ( θ ) = 

N−2 ∑ 

i =1 

[ w 1 · ( 1 − TPV F i ) + w 2 · FPV F i ] 

PVF = 

| ov i +1 ,θ | 
| I i +1 ,θ | , FPVF = 

∣∣I i +1 ,θ

∣∣ − | ov i +1 ,θ | 
| I i +1 | , 

ov i +1 ,θ = I i +1 ,θ ∩ I i +1 (8) 

here I i +1 represents the set of voxels labeled as CNV in ground 

ruth, and Ī i +1 ,θ represents the set of CNV voxels predicted based 

n parameter set θ . w 1 and w 2 represent the weights for 1- 

PVF and FPVF, respectively, and w 1 + w 2 = 1 . Higher w 1 results in 

igher TPVF and higher FPVF, and vice versa. The weights are set 

qually as 0.5 in this paper to achieve balanced true positive and 

alse positive rates in prediction results. 

The genetic algorithm [ 28 , 29 ] is adopted for optimization. The 

opulation size, iteration times/generations and tolerance were 

et as 20, 200 and 1 × 10 −100 respectively. The CNV concentra- 

ion computed by COSMOL is iteratively output to MATLAB® (The 

athworks Inc.) for optimization through LiveLink. 

.5. Prediction 

In parameter prediction part, allometric regression [30] and B- 

pline fitting is used to estimate the proliferate rate ρN−1 for the 

ast time period from the optimal proliferate rates ρ1 , ρ2 · · · ρN−2 . 

he results of both curve fitting methods are averaged to get the fi- 

al estimate. Based on ρN−1 , the prediction image of the last time 

oint Ī N is calculated using the hybrid model. Finally, the predic- 

ion accuracy is evaluated by comparing Ī N with the ground truth 

abel I N . 

. Experimental results 

OCT images of AMD patients with CNV were collected by 

EISS 40 0 0 OCT scanner monthly over a year, resulting in lon- 

itudinal data with 12 OCT volumes ( N = 12). The actual 

ize of the sampling area for 3D-image was 6 × 6 × 2mm 

3 , 

ith 512 × 128 × 1024 voxels (width ×Bscans ×height) of 

1.72 × 46.88 × 1.95 μm 

3 voxel size. In the study, subjects were 

andomly put into two groups: treatment group (T-group) and ref- 

rence group (R-group) as in Fig. 5 . They had different treatment 
111 
lans of repeated anti-VEGF injection. This study was approved 

y the ethical review committee of Joint Shantou International 

ye Center and conducted in accordance with the tenets of the 

elsinki Declaration. Written informed consent was obtained from 

ach subject. 

Our test dataset includes three subjects (P1-P3) from the T- 

roup and three (P4-P6) from the R-group. The curves showing 

he change of CNV size are plotted in Fig. 6 . The curves are very

ifferent, probably affected by many factors such as the stage of 

he pathology and the response to anti-VEGF injections. This shows 

hat it is crucial to have a flexible model that is individualized to 

ach single subject. 
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Fig. 7. CNV growth modeling results: (a) Isosurfaces of CNV concentration (left) and 

the concentration sectional view of all segmented blocks (right). (b) sectional plane 

of CNV stress distribution. Yellow arrows show the increase of stress toward the 

boundary of CNV region. (c) The Mises stress distribution pattern. Warmer color 

represents higher values. 
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Fig. 8. Comparison of prediction result (red) and ground truth label (green) of CNV 

region, where blue represents the overlapping. (a) 3D rendering. (b) 2D projection. 

(For interpretation of the references to colour in this figure legend, the reader is 

referred to the web version of this article.) 
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An example of the concentration image is illustrated in Fig. 7 (a), 

here warmer color in the center represents area with higher 

ensity, and the concentration decrease towards surrounding ar- 

as, colored by orange to blue. The double-headed arrow across 

he image indicates that corresponding positions share the same 

oncentration. Stress distribution is shown in Fig. 7 (b) and (c). It 

an be found that near the boundary of CNV region the stress is 

uch larger than inside the CNV region, while almost no forces 

re transmitted to the outside. 

The 3D CNV growth results depicted in 3D and 2D are showed 

n Fig. 8 , where each row corresponds to one subject. It be seen

hat the overlapping of the prediction and ground truth (blue) ac- 

ounts for a large proportion of the total volume, indicates high ac- 

uracy. The proposed method can well predict the location, shape, 

ize of the CNV. 

Table 2 shows the performance indices in terms of TPR, FPR, 

ice coefficient (DC), and relative volume difference (RVD), calcu- 

ated as follows: 

PR = 

| ̄I 12 ∩ I 12 | 
| ̄I 12 | , FPR = 

| ̄I 12 −Ī 12 ∩ I 12 | 
| R | −| I 12 | 

C = 

2 | ̄I 12 ∩ I 12 | 
| ̄I 12 | + | I 12 | , RVD = 

| | ̄I 12 | −| I 12 | | 
| I 12 | 

(9) 

here Ī 12 and I 12 are the set of CNV voxels in predicted results and 

he ground truth for the 12th time point, respectively, and R is the 

et of voxels inside the retina. | · | represents the number of pixels 

n the set. 

Results of the proposed method are compared with those 

chieved by reaction-diffusion (R-D) model [14] , a deep neural net- 

ork (DNN) model, and a curve fitting model. The DNN model ex- 

racts features from 3D OCT data of previous time points, and com- 

ine them to predict the future CNV. More details can be found 

n Appendix. The curve fitting model serves as a baseline. A cu- 

ic function is fitted to the total CNV volume of the first 11 time 

oints and the CNV volume at 12th time point is obtained by ex- 

rapolation. With this baseline, only the size of CNV is predicted, 

nd therefore only RVD can be calculated. 

For both T-group and R-group, the proposed hybrid model out- 

erforms all other methods in accuracy. The total average TPR, FPR, 

C, and RVD over the six subjects are 80.0 ± 7.62%, 23.4 ± 8.36%, 

8.9 ± 7.54% and 3.58 ± 2.68%, respectively. 
112 
The analysis of the trained model accuracy over time is shown 

n Fig. 9 , representing how well the model fitted to the training 

ata. Each point in the chart represents the respective index (DC, 

PVF or FPVF) obtained by the optimized model for one patient 

t a particular time point. It is found that although most points 

re within the range of mean ±sd, the values of P2 deviate a lot 

rom the average, as showed by blue diamond shapes. This corre- 

ponds to the worst performance indices of P2 showed in Table 2 . 

y further inspection at the OCT images, we find that the low per- 

ormance may be caused by the following reasons. First, the qual- 

ty of image acquisition is the poorest among all data. There are 

ig differences between adjacent slices, probably caused by unsta- 

le fixation. This leads to weak correlation both spatially and tem- 

orally, which makes registration difficult and eventually hampers 

he model fitting. In addition, the CNV region of this subject is rel- 

tively small-sized ( Fig. 6 ) during whole treatment period, which 
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Fig. 9. Model fitting accuracy over time (a) Dice coefficient. (b) TPVF. (c) FPVF. Each 

point in the chart represents the respective index obtained by the optimized model 

for one patient at a particular time point. The blue diamonds represent data for 

Patient 2, which has the worst performance. (For interpretation of the references to 

colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 10. Time series 3D U-Net. 
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113 
akes the false positive relatively big. Nevertheless, the RVD for 

2 is still low, indicating that the total CNV volume is predicted 

uite precisely. 

. Conclusions 

In this paper, we have proposed a novel 3D CNV growth pre- 

iction approach with a hybrid model, based on longitudinal volu- 

etric OCT scans. In CNV growth modeling stage, the mass effect 

n slow deformation is used to combine a bio-mechanical model 

f hyper viscoelastic material with reaction diffusion equation. The 

eaction-diffusion equation provides proliferation and spread infor- 

ation of the pathological region, while biomechanical model in- 

ludes the information of different structures and functions of the 

yper-viscoelastic materials inside the retina. This makes the pro- 

osed hybrid model fit better to the longitudinal data than a sin- 

le reaction-diffusion model. In addition, in the reaction-diffusion 

quation, a personalized treatment factor is added, making the 

odel applicable to patients with different treatment plans. 

Compared with the deep learning method, the proposed 

ethod achieves much better results based on the small training 

ataset, while less intensive training is needed. What’s more, the 

roposed method, based on physical models, is highly explainable 

nd can be further explored to investigate the physiopathology of 

NV. 

There are some limitations in this work. First, currently the per- 

ormance of the proposed method has some dependency on the 

mage quality. In the future, to make the method more robust, we’ll 

nvest on better pre-processing methods, especially automatic reg- 

stration and segmentation methods. Secondly, the size of dataset 

s small. We’ll test and improve the method in a bigger dataset in 

uture works. As the CNV progress is also affected by some random 

actors, with more data, we’ll consider integrating methods such as 

robabilistic modelling [31] in the current framework. 

Experiments on clinical data reached promising prediction per- 

ormance. It is expected that the predicted CNV size, location and 

hape can help ophthalmologists in prognosis, and making person- 

lized treatment plans. In the future, we’ll also investigate predic- 

ion with data from less and earlier time points, so that the clini- 

ians can find non-responders to anti-VEGF treatments at an early 

tage, switch to other treatments and avoid the costs and possible 

omplications caused by repeated injections. 
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ppendix: The DNN model for comparison 

Fig. 10 shows the structure of time series 3D U-Net used for 

omparison in Section 3 . This network uses 3D U-Nets to extract 

eatures from each time point, and the features are concatenated 

ver time. Then CNV prediction is output at the last 3D U-Net 

tructure. 

The first 11 OCT volumes and the CNV ground truth from all 

 patients are used to train the network, and CNV prediction for 

he 12th time point is the test output. Due to limitations of GPU 

emory, each time in training, only 3 OCT volumes consecutive in 

ime are fed in the DNN to predict the CNV in the next time point.
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